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A B S T R A C T

Aviation safety data are limited in availability due to their confidential nature. Some aggregated overviews
already exist but in order to effectively use the data, it is important to fill the gaps of their existing limitations.
For some data, there are not enough data points in order to process them through advanced analysis. For other,
only expert assumptions can be obtained. In both cases, these shortcomings can be addressed via proper data
resampling or simulation where little effort can make the data suitable for various research and development
initiatives. Examples of real aviation safety data made public are demonstrated together with key principles of
how to perform their resampling. Then, for cases where only expert assumptions are available, general solution
to the transformation of the assumptions into simulated data is introduced. The goal is to demonstrate how to
transform accessible data or knowledge about aviation safety into data samples with sufficient granularity. The
results provide general solution suitable not only for aviation safety data and knowledge, but also for similar
transportation or high-risk industries related data issues, indicating that both the data resampling and simulation
provide an option for generating datasets, which can be used for statistical inferential methods, linear regression
modelling, recurrent analysis etc. Example of data resampling application is included in Aerospace Performance
Factor calculation for years 2008 up to 2015.

1. Introduction

To date, aviation safety is subject of intensive research in terms of
new information technology deployment. It is recognised, that further
progress in this domain can be achieved by implementing technology,
which collects, processes and analyses safety data in order to produce
system-wide information of how the system performs on safety (ICAO,
2013). This information is to be used for safety-critical decision-making
within safety management system as far as the aviation is concerned,
but this principle is generally true for other high-risk industries as well
(Niu and Song, 2013; Klein and Viard, 2013). One of the features of the
system-wide information is that it cannot be reliably derived by in-
dividuals from the data available because aviation became very com-
plex, i.e. hardly manageable for humans. The industry is distributed
system of many types of stakeholders (airspace users, organisations,
regulators, manufacturers, policy makers etc.) which use different
technologies, different procedures and which overlap with each other to
various extent. As a result, safety performance of one stakeholder may
be severely affected by how safety is managed by other stakeholder and
it can be difficult to identify this from either side.

Today’s accidents only support this claim. They consist of long chain
of events and contributing factors, which typically exceed responsi-
bilities of one stakeholder and its safety management (Socha et al.,
2014). From the perspective of managing safety, it is important to have
some sort of full picture to be able to apply effective measures to pre-
vent modern accidents. The distributed character of aviation, however,
sets constraints for achieving such a full picture. Not only are the data
and the full picture to be established distributed in parts among the
stakeholders, but also the nature of both is often confidential and may
have potential to damage someone’s position on the market, if misused.
Aviation authorities encourage organisations and other stakeholders to
share safety data, experience and safety knowledge (ICAO, 2013;
European Commission, 2010) but the degree of these activities is still
not perceived to be satisfactory. This paper does not aim to resolve this
issue but rather address its consequences, namely limited safety data
availability.

Research and development initiatives in the domain of aviation
safety are restricted by the safety data not being available. Whilst it
may be possible to sign some bilateral confidential agreement between
two parties, this is still rather difficult to achieve for multiple
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stakeholders at the time. Fortunately, some of the data are regularly
(annually) published by authorities in form of aggregated overview of
key safety issues (such as Safety Regulation Commission, 2016; EASA,
2016 or Federal Aviation Administration, 2015), but this is true only for
some segments of the industry, e.g. for air navigation services providers
(ANSPs). These providers have a lot of advanced technology and data at
their disposal and they are typically state-owned monopolies, which are
not subject of market competition. The latter was likely the key factor
for making some of their data publicly available.

To better understand the issue, it is important to note basic facts of
data evolution in this domain. Safety was always measured indirectly,
i.e. through its absence (Reason, 2000). It is quite hard to find any
effective way to measure it directly as it is the case for conventional
measurements related to more tangible issues (Hanakova et al., 2017).
Overall safety is intangible system property and even where it is pos-
sible to measure it directly, it is often impractical because measuring
the things which go right simply means a lot of effort to be spent in
order to have meaningful records. Unlike safe state, unsafe outcomes
are not only less frequent but they are much more tangible thus con-
siderably easier to track (Hollnagel, 2014). Aviation accidents and in-
cidents attract society from early days of its existence and for decades
they were the best driver for safety improvements. As soon as they
became rare, the focus just shifted to incidents and safety occurrences
with their contributing factors, which, according to investigations, lead
to the accidents.

Recently, a new type of data emerged in this domain. Tracking back
the root causes of accidents led to the discovery of the so-called orga-
nisational factors denoting those contributing factors, which stem from
how safety management and safety oversight work (ICAO, 2013). Until
the discovery of the importance of how aviation organisations and
regulatory bodies are set up as entities, no safety management system
nor any sophisticated safety oversight were needed. Progressive re-
quirements for gathering how organisations and regulatory bodies ap-
proach safety from management perspective appeared first around the
year 2010 (European Commission, 2010; EASA). These requirements
established datasets different in their very fundamentals; they assess
activities which can hardly be associated with specific unsafe behaviour
but which are capable of generating background on which unsafe be-
haviour emerges. Starting to collect this type of safety data was sig-
nificant milestone for aviation safety as it brought the industry closer to
generate the full picture.

Nowadays, we are closer to the full picture as the content of col-
lected data evolved, but due to the insufficient data sharing and con-
fidentiality restrictions, they are typically not available for research and
development initiatives. This inhibits the progress of introducing new
technology which could integrate and process the data so that all par-
ties would benefit from industry-wide, open data based knowledge. So
has the progress to be achieved the other way. Current research in-
itiatives have to make the best use of public but restricted data samples
to come with solutions that aviation organisations may trial and which
would expedite establishing the full picture.

Data scarcity, however, is not a new issue. There are several studies
available to date, which propose methodologies to overcome this issue
in different applications. In fact, very few deal with this problem in
scope of safety (such as Yu et al., 2017; El-Gheriani et al., 2017, which
are only oriented to major accidents); much more frequent are studies
oriented to system reliability, failure and risk assessment in terms of
data uncertainty and its reduction. Both safety and reliability oriented
studies are typically using Bayesian approach in some variations to
produce a posterior distribution by combining data, expert knowledge
or various simulation results. Among other methods, first order relia-
bility method and Monte Carlo simulation (Awadallah et al., 2016), or
grey system theory (Wen et al., 2011) are used in respective applica-
tions. Special attention in the literature is paid to expert elicitation,
which was already formalised in several publications (such as Meyer,
2001; Keeney and von Winterfeldt, 1991 or Aven and Guikema, 2011).

All the methodologies are, however, difficult to apply directly on the
problem in this work as they require various inputs which are out of the
scope of this paper. The problem here is of more generic nature, even
though it can be complemented with the methods from other studies.

With respect to the afore-mentioned, this article describes the public
aviation safety data in detail and provides solutions for how to over-
come their limitations. It suggests generating either synthetic aviation
safety data or resampling the data already available. The motivation to
use data resampling is based on the need to decompose existing signals
to increase their granularity for the purpose of further processing and
analysis. Data simulation complements this approach by extending the
possibility to generate entirely synthetic signals.1 Synthetic data have
their apparent limitations but the important aspect is that they can
enable application of advanced analyses, even for experimental or
learning purposes only, where real data do not allow it. Direct appli-
cation of mathematical tools and methods, such as statistical inferential
procedures, autoregression or recurrent analysis, to make inferences
about safety performance (the full picture) would be otherwise im-
possible. To enable the tools and methods, it is important to resample
the data, i.e. to transform annual figures into month, week or day
distribution. For cases where no data are available, simulation based on
expert assumptions can provide the solution.

Taking into account the goal, this paper deals with methodology of
both data resampling and simulation. It describes data and identifies
the gap for improvement. The methods are applied on selected figures
from real datasets in the domain of aviation safety. At the end, aviation
safety performance is computed using the resampled data to exemplify
the contribution of the proposed solution.

2. Methods

This section details the proposed methodology to achieve the goal of
this paper. At first, aviation safety data are specified, including their
sources, relevant issues and examples. At second, data resampling fol-
lows with description of key principles of how to combine expert
knowledge and real datasets to increase data granularity by the means
of mathematical functions. Lastly, after the outline of data resampling
principles, the methodology further specifies data simulation in order to
extend the principles of generating synthetic data to situations where
no real data are available.

2.1. Data characteristics

Aviation safety data comprise accidents, incidents and safety oc-
currences. The data are available in form of aggregated figures denoting
number of observations of respective accident, incident or occurrence
during given time interval. Additionally, new data types were recently
introduced to aviation through the European Union-wide (EU-wide)
safety key performance indicators (SKPIs) (European Commission,
2013), which are based on the so-called organisational factors. How-
ever, these are using artificial scores and due to their novelty, inherent
bias and lack of relevant expert assumptions, they are not considered in
the methods of this study.

Aviation accident records were gathered reliably till now and they
are publicly available together with investigation reports, including
conclusions and corrective measures. These data can be found on
website of responsible body for respective investigation.2 But because
aviation accidents became rare, they solely cannot be used for safety
management today. In terms of any research and development in-
itiatives, much more valuable are data concerning incidents and safety

1 For further reading on data resampling and simulation methods refer to Lahiri (2003)
and Carsey (2014)).

2 Such as Air Accidents Investigation Institute (2017) in the Czech Republic or
Bundesstelle für Flugunfalluntersuchung (2017) in Germany.
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occurrences. These data are published on websites of some aviation
authorities, but there are not many yet.

One of the most useful data repositories is provided by European
Organisation for the Safety of Air Navigation (EUROCONTROL) on its
dedicated performance monitoring websites 3,4,5 and in annual safety-
and operations-related reports (Safety Regulation Commission, 2016;
EUROCONTROL, 2016). EUROCONTROL provides EU-wide aggregated
overview of the most common safety issues in the domain of Air Traffic
Management (ATM) and ANSPs in form of interactive dashboards (see
Fig. 1) together with many other overall performance-related in-
dicators, such as complexity scores, flight delays, traffic distribution
etc. Because the most detailed aviation safety data are provided from
this domain, they are used to exemplify generating synthetic data.

At the highest level of detail, ATM related safety data are published
on (a) Separation Minima Infringements; (b) Unauthorised Penetrations
of Airspace; (c) Runway Incursions and (d) ATM Specific Occurrences.
The data include severity distribution for the most severe events (se-
verity A - serious incident and severity B - major incident, as defined in
(EUROCONTROL, 1999)) and are available back to the year 2004.
Federal Administration Authority (FAA) publishes regularly reports of
similar quality in the U.S., but unlike in Europe, no data on organisa-
tional factors (structure) are provided. In Europe, the data can also be
obtained directly from providers’ annual reports but these are not all
consistent in their content. Some providers are more advanced in safety
and others are less, which results in each ANSP publishing different
data.

Table 1 demonstrates the Separation Minima Infringements (SMI) in
total numbers from year 2008 to 2015. It shows EU-wide figures of
these occurrences, where severity A and B Infringements are extracted
and stated separately because they represent the most severe outcomes
of this type of occurrence.

For aviation organisations other than ANSPs there are almost no
data accessible. Owing to the recent initiatives to establish common
reporting scheme in the EU (European Commission, 2014), some data
from other organisations are already available on the EU level and basic
statistics and knowledge were extracted into newest annual safety re-
view by European Aviation Safety Agency (EASA) (EASA, 2016).
Compared to the EU-wide data published by EUROCONTROL, however,
it does not provide much level of detail, such as distribution per year
and month, or per country and airport.

With respect to the mentioned facts, this study demonstrates the
basic principles of resampling using data from EUROCONTROL’s re-
positories, which relate to the listed occurrences measured at the
highest level of detail. In fact, its data exclusively can be resampled
with no need for complementing them with data from other stake-
holders to be able to test, for instance, statistical and stochastic tools to
analyse the data.

2.2. Data processing

Data processing can be performed using two methods: data resam-
pling and data simulation. The selection of appropriate method depends
on following conditions. The first is real data accessibility and the
second is expert assumptions availability. In this study, data resampling
is used only if real data are accessible and at least some expert as-
sumptions are provided. Data simulation is used to synthesise data
vectors where no real data are accessible but expert assumptions exist.
It is possible to use the simulation also in case where no data nor any
expert assumptions are available but then the output may be highly
questionable.

2.2.1. Data resampling
First method transforms real data into desired distribution with the

help of expert assumptions. Typically, resampling is needed when data
granularity is to be increased; even the most detailed data on safety
occurrences in aviation are public only as annual figures of occurrence
observations but at least distribution by month or week is needed for
the deployment of advanced mathematical methods. To resample the
data, expert assumptions are to be made before the resampling process
starts. In general, regarding safety occurrences similar to SMI, it is true
that (a) occurrence rate is higher in summer than in winter; (b) the
higher the total amount of reports per year the bigger the difference
between peak and trough values; (c) occurrence observations should
correspond to the traffic distribution, i.e. maximum number of ob-
servations is most likely in July and minimum in January and (d) values
are to be natural numbers or zero.

The assumptions are based on following facts. Occurrence rate as-
sumption stems from the fact, that the higher the traffic saturation, the
higher the probability of a conflicting situation. This is especially true
for today’s volumes of traffic reaching maximum capacity of existing
airspaces in Europe (Lehouillier et al., 2016) and it is indicated by in-
creasing complexity scores of Europe’s ANSPs (EUROCONTROL, 2017).
Traffic saturation is known to be seasonal, what can be inferred from
traffic figures clearly indicating regular peak values around July and
troughs around January, justifying the second assumption. Absolute
difference between peak and trough values of occurrence observations
during a year can hardly be constant for all safety occurrences; occur-
rences with hundreds of observations per year should have the differ-
ence amplified by their magnitude, causing it to increase. Occurrences
with no more than 10 observations per year must remain within their
limits. Last assumption relates to the format of occurrences. Any oc-
currence is a binary variable; either there is an occurrence or there is no
occurrence. It is clear that there cannot be negative number of ob-
servations and any other than natural number or zero is not conceivable
in real world. All these assumptions are general enough to be universal
and valid for all safety occurrences similar to the SMI, i.e. for all oc-
currences on which the data are currently accessible. This is mainly due
to the binary property of monitored safety occurrences and their close
relation with traffic saturation, especially when reaching limits of given
airspace.

Taking into account all these assumptions, following equation
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Fig. 1. Separation Minima Infringements (SMI) dataset with number of states reporting
(NSR), total number of records (TNR), number of reports with severity “A” type (SA) and
severity “B” type (SB).1 Note that only TNR refers to the right-most y-axis.

Table 1
Separation Minima Infringements (SMI) distribution per year and highest severity.

2008 2009 2010 2011 2012 2013 2014 2015

SMI severity A 56 24 16 35 29 30 23 20
SMI severity B 236 141 178 217 258 232 250 228
SMI total rep. 1711 1418 1402 1571 1796 2161 2359 2316

3 http://ansperformance.eu/.
4 http://www.eurocontrol.int/prudata/dashboard/eur_view_2014.html.
5 http://www.eurocontrol.int/prudata/dashboard/rp2_2015.html.
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provides basic solution to the problem, where the goal is to resample
data into any other distribution with higher granularity:

∫=N k f x dx· ( ) ,
M

0 (1)

where N is annual total number of selected occurrence observations, M
is scale determined by the new distribution to be produced, k is coef-
ficient of seasonal variance, x represents time and f x( ) is time-depen-
dent mathematical function capturing expert assumptions. Scale M is
determined by total number of data points to be produced (e.g. =M 12
for data distributed by month whilst N is the total figure per year).
Coefficient k may be calculated in many ways but it should be in line
with provided expert assumptions. If there are no expert assumptions
on the coefficient, one of the possible ways to calculate it is to use
average occurrence rate N M/ as a starting point because the variance
typically depends on this rate: the higher the number of observations
per event type, the higher the variance. For datasets by EUROCONT-
ROL, the variance is unknown and no expert assumptions can be con-
sidered, so the problem is then shifted to the coefficient k. Based on
empirical testing in MATLAB environment (MATLAB R2015b,
MathWorks, Inc., Natick, MA,USA) for the purpose of this study, rea-
sonable results with the data samples from Table 1 were achieved with

=k N M0.25· / (k amplifies f x( ) by 25% of the average occurrence rate
N M/ ). The coefficient may be set differently at ones discretion so that
the results copy as much as possible what is supposed to be real.

With regard to the Eq. (1), new data distribution can be calculated
as follows:

= = …−N k F x i M[ · ( )] , 1,2, , ,i i
i

1 (2)

where Ni is number of occurrences during selected time interval i and
F x( ) is anti-derivative of the integrand (function f x( )). Obviously, Ni
needs to be rounded in order to fulfil the last assumption about natural
numbers or zero. If deemed appropriate, Eq. (2) may be complemented
with white noise, which makes the resampling more realistic. The noise
can be of any distribution but because Gaussian white noise is good
approximation of many real-world situations (Yanushevsky, 2007), it is
preferred in this study. Gaussian white noise can be generated using
pseudorandom component of Gaussian distribution with mean 0 and
variation equal to 1 (such pseudorandom numbers can be produced by
MATLAB or similar software). The component is based on the following
equation:

∊→ = → → ∼p u u N μ σ· , ( , ),i i
2 (3)

where ∊→ is vector of final white noise components, →ui is vector of
pseudorandom Gaussian distributed numbers with mean =μ 0 and
variance =σ 12 and p is noise effect coefficient. The coefficient p am-
plifies the noise as needed. If the expert assumptions do not include any
information about the noise, the variable p should be so that the output
will be reasonable, i.e. no extreme differences between each two con-
secutive resampled points are achieved but on the other hand, the
function f x( ) should not be clearly visible. In addition, the coefficient
needs to be variable with the magnitude of occurrence observations,
because the same noise cannot influence data with hundreds of occur-
rences per given time period in the same way as those with no more
than ten. Therefore, p needs to be expressed rather as ratio, dependent
on the average number of occurrences of given event type, multiplied
by constant as follows:

=p r N
M

· , (4)

where N is number of selected occurrence observations of original
distribution, M is scale determined by the new distribution to be pro-
duced and r is constant to be set. Experiments performed in this study
estimated the value for =r 0.125 to fit well the EUROCONTROL data
repositories but it may be set different for other cases. The sum of all Ni
may not precisely be equal to the real values of N due to rounding the

results and adding the noise, but it should remain acceptably close for
all cases. This also means that there should not be too much noise
added, otherwise the resampling output may exceed reasonable limits.

For the particular expert assumptions introduced in this chapter,
data seasonality may be modeled by sinus function:

∫= ⎛
⎝

− − ⎞
⎠

N k x π
M

π π
M

dx·sin · 2
2

2 .
M

0 (5)

The sinus uses the expression

− −x π
M

π π
M

· 2
2

2 , (6)

to move the extreme values on the interval 〈 〉M0, so that its maximum is
achieved at the point of M7· /12 (July data) and the minimum at M/12
(January data). The sinus function is shifted upwards by constant of
integration so that no values are negative. Recalculating new occur-
rence distribution during given year will, therefore, follow the equa-
tion:

= ⎡
⎣

− ⎛
⎝

− − ⎞
⎠

⎤
⎦

= …
−

N k x π
M

π π
M

i M·cos · 2
2

2 , 1,2, , ,i
i

i

1 (7)

where Ni is number of selected occurrence observations during month i
in selected year, M is scale determined by the new distribution to be
produced, k is coefficient of seasonal variation and i is successive time
step of the series from new distribution.

However, problem may arise as soon as specific requirement exists
for resampled data distribution. No data distribution is assured by Eq.
(7) but empirical testing showed that Gaussian and various skewed
distributions are randomly obtained with the sinus function and k.
Safety occurrences in aviation are assumed to follow non-Gaussian
distribution (Seshadri, 1998; Wang et al., 2014) which also seems to be
the case in other industries, where inverse Gaussian distribution fits
incidents and lognormal distribution fits less severe but more frequent
non-conformances (Love et al., 2015). Unfortunately, inverse Gaussian
distribution could not be obtained from Eq. (7) and there is no general
transformation function by which such distribution could be obtained
e.g. from Gaussian distributed random variable (Chhikara, 1988),
which is frequent product of the equation. The basic solution in Eq. (2)
may produce different data distribution with different f x( ) and k and so
has the investigator first check the distribution of the output from Eq.
(2) and then add white noise with appropriate distribution in order to
obtain desired distribution of the resampled data. Due to the com-
plexity, however, this may not always be possible.

To demonstrate the resampling method as applied on aviation safety
occurrences (Eq. (7)), at this point there is missing only a real figure of
annual occurrences of selected event type (variable Ni) and the final
decision about how many points are to be obtained from the figure
(variable M). In this paper, SMI severity B recorded number of occur-
rences for year 2011 within the EUROCONTROL region was randomly
selected ( =N 217i occurrences) and this figure was resampled into
monthly-distributed dataset of 12 figures (M=12) for each month
during 2011. The results are in shown in Section 3.

2.2.2. Data simulation
As long as there are no data available and it is important to generate

some, assumptions have to additionally include what is available for
resampling, i.e. occurrence observation figures. Experts to provide such
assumptions are preferred to be front line personnel as they can usually
estimate how frequent some occurrences are. For example, an Air
Traffic Control Officer (ATCO) can estimate how many times a day or a
week does he or she experience Short Term Conflict Alerts (STCA),
alerting him or her to some aircraft being on collision course, whether
horizontally, vertically or both. Usually, ATCO can also estimate how
much does this value vary during a year, providing an estimation for
variability as well.

Key principles of the simulation remain the same as for data
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resampling, but this time the core lies with pseudorandom number
generation. Concerning data simulation, the pseudorandom component
will not simulate noise only, but the entire dataset. The distribution
parameters are to be fitted to the expert or front line personnel as-
sumptions on the occurrence. The basic solution for data simulation is
then as follows:

∑= → = → ∼ ∧ ∈
=

E e e e IG μ λ e|| || , ( , ) ,i i
j

D

ij i i i ij
1

0
i

�

(8)

where Ei is sum of occurrence observations of event type E during time
period →i e, i is vector of observations during time period i D, i is number of
data points during time period i and eij is jth element from the vector →ei .
Vector elements are assumed to be natural numbers or zero and obeying
inverse Gaussian distribution with mean μi and shape parameter λi
(both variable with i). In this case, no real data exist which would re-
strict the simulation and so it can be based on truly inverse Gaussian
distribution.

The vector →ei is to be generated using pseudorandom numbers as
MATLAB or similar software can produce. Average value μi and its
estimated variance can be provided by an expert, but shape parameter
λi is difficult to obtain. It can only be reliably inferred from real data
samples of similar occurrences. Because data in EUROCONTROL’s re-
positories are not sufficient for such analysis, parameter λi will be re-
placed for the purposes of this study to produce single parameter in-
verse Gaussian distribution as follows:

=λ μ .i i
2 (9)

This distribution allows overcoming the issue with unknown λi, but
eventually it may not be so different from the distribution based on real
data. For lower numbers of occurrence observations (μi less than ap-
proximately 25), the probability density function is similar in shape to
how the distribution of aviation safety occurrences is described by
Wang et al. (2014), whilst for larger numbers (μi more than 25) it is
approaching normal (Gaussian) distribution. Mean μi greater than 25
can be prevented simply by utilising the pseudorandom element to si-
mulate data ”on daily basis” as it is the case in Eq. (8), where weekly or
monthly data can be produced as a sum of daily simulation. This is
possible due to additive property of the distribution according to which
the sum of inverse Gaussian distributed random variables produces
another inverse Gaussian distributed variable under given conditions
(Chhikara, 1988). According to all EUROCONTROL’s datasets, it is very
unlikely, that there would be on average 25 or more observations per an
occurrence a day. This way, the desired properties of inverse Gaussian
distribution are preserved and can be used to simulate synthetic data.
However, the noise induced by the omission of actual λi may be sig-
nificant in some cases, and so should such a simulation be used only
when necessary and only for testing of mathematical models, analytical
tools etc. The desired noise is added by rounding the values to achieve
natural numbers or zero but this may change the distribution. It is

therefore highly advisable to perform tests of the produced statistics
before the data are used.

To demonstrate the simulator, fictional assumptions (a) STCA is
experienced on average 2 to 3 times a day; (b) the average occurrence
rate during peak days is by 1 occurrence more a day, and vice versa, the
average during trough day is by 1 occurrence less a day; will serve as
the basis to synthesise new data.

STCA is a safety occurrence similar to SMI. In fact, it relates to SMI
because it is supposed to alert ATCO to prevent SMI or similar situations
in advance, but obviously there must be more STCA warnings than
SMIs, because STCA under normal operational conditions precedes SMI
and only after the conflict is unresolved by ATCO, SMI can emerge.
Other assumptions are therefore the same as in the example with data
resampling.

The assumptions are to be taken into account in similar way as for
data resampling, i.e. by the means of mathematical functions, which
quantify the assumptions. For the STCA assumptions, Eq. (8) was
complemented with the following equations, using the same sinus
function to model data seasonality:

= ⎛
⎝

− − ⎞
⎠

+ = …μ k i π
M

π π
M

x i M·sin · 2
2

2 , 1,2, , ,i E (10)

= −k x xmax( ) min( )
2

,e e
(11)

where μi is the distribution mean during time step i k, is distribution
mean variation, M is scale determined by the new distribution to be
produced and xE is expert assumption on process intercept. Given the
assumption on occurrence rate for STCA, the process intercept value
(xE) is 2.5 per day. Coefficient of seasonal variation k can be calculated
as the difference between its maximum and minimum estimated value,
as follows (by the means of Eq. (11)).

= − =k 3.5 1.5
2

1 (12)

If the goal is to generate data distributed by month, Di corresponds to
number of days per each month from January to December and M is
equal to 12. Likewise, many other assumptions may be included, which
can set different λ x,i E and μi or even set requirement for different
probability distribution of the simulated data. The simulator does not
aim to provide solution for every possible scenario but rather provide
key principles on how to simulate safety data by reusing the principle of
data resampling from previous section.

At this point, the simulator Eqs. (8)–(11) can be used to generate
synthetic data for STCA event type according to the afore-mentioned
expert assumptions (a) and (b). Variable M was set to 12 as in case of
data resampling, Di included number of days of each month during
average year (28 for February) and variable k was set to 1 in line with
Eq. (12). The results are in shown in Section 3.
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Fig. 2. Basic solution for given assumptions and SMI severity B in 2011 (a) and generated monthly-distributed data according to the basic solution for SMI severity B in 2011 (b).
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3. Results

The results of data resampling are depicted in Fig. 2. They are based
on SMI severity B from year 2011. Fig. 2a demonstrates the sinus
function behind the data resampling equations, where the area below
the sinus curve and x-axis equals total number of SMI severity B ob-
servations in the year 2011. Fig. 2b depicts resampled data. Pseudor-
andom component (as per Eqs. (3) and (4) with r=0.125) was added
and so the distribution does not follow the sinus function too precisely
as it is assumed to be the case during real operations. The data represent
occurrence observations distributed by month of the year 2011. Data
distribution remains random in this case.

The results of data simulation are on Fig. 3. The simulation is based
on the fictional assumptions about STCA event type and the results are
distributed by month of a fictional year. For February, 28 days are as-
sumed in this example and the data obey inverse Gaussian distribution.

4. Discussion

The sum of all resampled occurrences on Fig. 2b is 231 which,
compared to the real data of 217 occurrences in 2011, shows that the
sum of the error induced by rounding and adding the noise was 6.45%
thus not so significant.

Concerning data simulation, due to quite a lot of uncertainty put in
the simulator (all the assumptions together), each time it runs it usually
produces a notably different curve or histogram. This may not always
correspond to the reality and thus shall not be preferred over data re-
sampling, but the results make it possible to learn how to build or to
trial different methodologies or advanced models where no other op-
tions exist. In any case, it is advisable to check on regular basis with
experts or front line personnel how the trends evolve in order not to
have the simulated data based on obsolete assumptions.

It is possible to use different or even multiple functions f x( ) instead
of the sinus used in this study for data resampling or simulation
equations. However, in such case, it is important to carefully quantify
qualitative statements, which produce such need and insert them into
the equations as either coefficients, constants or mathematical func-
tions. This study does not aim to provide solutions for any possible case
that may exist, but it rather outlines and exemplifies how such simu-
lator and data resampling works, providing general solution for most
common issues. On the other hand, the general nature of the proposed
methods provides an option for their implementation in other trans-
portation domains or high-risk industries.

When considering the results in terms of other research performed
especially in reliability engineering, where similar problems with data
unavailability appeared, the overlap with this study regards using more
robust functions f x( ) or parameter estimation of more optimal function
than sinus used in this work. Bayesian approach of integrating different

data sources and expert knowledge works with probability density
functions of parameters typically pertaining different variables (inputs)
composing a regression model to predict future output. This study is,
however, focused only on the mathematical models and their applica-
tion on increasing data granularity. The core principles are also de-
monstrated on data simulation, but the input available in this study is
very limited to allow for robust approach in producing mathematical
models. If the inputs necessary to use such modelling are available,
Bayesian approach and other methodologies applied to data scarcity
can be used to produce more complex and precise model for generating
or resampling data. Likewise, additional improvement can be achieved
by robust expert elicitation, following the published frameworks sui-
table for particular application.

Both resampled and simulated data are suitable for applications
only as entire datasets. This is because local differences between two
consecutive data points may not correspond to the reality at all either
due to inaccuracies in expert assumptions or due to added noise, and if
only a selection of such data is used for building mathematical models,
this may be completely misleading. Therefore, it is highly re-
commended to use entire datasets and not only their subsets.

As an example of application of the methods in this study, re-
construction of Aerospace Performance Factor (APF) according to the
methodology developed by FAA (Lintner et al., 2009) will be demon-
strated. Generally, the APF is one of the system-wide information,
which can be produced by composing safety data into a single data
point, which is intended to quantify level of system’s safety perfor-
mance. Concerning the data published by EUROCONTROL, the APF
signal can be reconstructed for several years and in this example, it is
calculated from 2008 up to 2015. According to the APF methodology,
required are (a) resampled data on selected EU-wide safety occurrences
into distribution by month and (b) EU-wide traffic distribution data by
month in total hours flown format.

For the selected time period, data on safety occurrences from all
EUROCONTROL data repositories were subjected to resampling. The
real data sample comprises only 8 data points per each occurrence
(distributed by year), i.e. 96 data points per each event type were
achieved by the resampling process. It is to be noted here, that EUR-
OCONTROL used for their APF calculation larger datasets concerning
the safety occurrences included in the calculation (Neubauer and
Lintner, 2010) whilst in this study only the occurrences provided in the
public data repositories were used. The reason for omitting majority of
safety occurrences used by EUROCONTROL is the complete unavail-
ability of respective safety data. The missing data were not simulated
due to that only rough assumptions could be provided. On the other
hand, the most critical safety occurrences are included in the public
repositories and so simulating the rest of the data could actually in-
troduce more noise to the reconstructed signal than just omitting the
data. Therefore, in this case, data resampling was preferred over data
simulation. The impact of this decision can be verified through the
comparison of the reconstructed signal with EUROCONTROL’s output
(Fig. 4), because both include year 2008.

With regard to the traffic distribution, the public repositories in-
clude annual total figures for flight hours in the EU region, but only for
year 2015 the distribution by month is available. On the other hand, the
same data for traffic distribution in the EU region are available using
different unit, namely average daily movements, for the entire time
period both as annual figures as well as figures distributed by month.
The procedure to obtain distribution by month for years 2008 up to
2014 needs no resampling because the real data are there and just need
to be converted into different units. Most important is to obtain the
ratio between the figures as follows:

=R ADM
THFm

m

m (13)

where Rm is the calculated ratio, ADM is traffic in average IFR daily
movement format, THF is the same figure in total flight hours format
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and m stands for respective month. Because the traffic figures in total
flight hours format distributed by month are accessible for year 2015
only, the ratios Rm can be calculated using data from year 2015 only.
Obtained ratios serve then as coefficients to recalculate all the years
backwards using Eq. (13) to obtain monthly-distributed traffic data in
total hours flown format.

At this stage, all variables are known and the APF signal can be
reconstructed. Fig. 5 depicts the results. For the year 2008, re-
constructed APF signal is similar to the one on Fig. 4. EUROCONTROL
used relative APF figures, which are adjusted to the process mean whilst
Fig. 5 demonstrates absolute APF figures, which cause shifting the scale
of y-axis. Some difference can be observed, which is certainly attribu-
table to the difference between the data behind each calculation, but
comparing the outputs for the year 2008, the two signals are convin-
cingly similar in shape and magnitude.

Last point to discuss is the new type of data on organisational fac-
tors. They are publicly available in Europe only, measured from 2012
and referring to the three EU-wide SKPIs, measured at both national
and ANSP level. The data contain information on (a) Effectiveness of
Safety Management; (b) Application of Just Culture and (c) Risk
Analysis Tool (RAT) methodology usage.

This dataset is limited compared to the accidents and occurrences
due to its novelty. It is available on the same EUROCONTROL websites
together with accidents, incidents and occurrences but methodology
and format of these data is obviously different from safety occurrences.
To evaluate these SKPIs, artificial scores are used, represented by per-
centage derived from self-assessment questionnaires (see EASA). These
questionnaires, however, provide certain room for bias, and so the data
are not comparably accurate to the safety occurrence records. Con-
sidering this new type of safety data, no such data resampling or

simulation can be used as for safety occurrences. These data are not
seasonal nor do they depend on the volume of traffic etc. Their dyna-
micity is very low; according to the dashboards at EUROCONTROLs
websites they tend to change a bit year after a year, but it is quite
normal as they refer to things, which are hard to change (such as
fundamentals of safety management system), and which are seasonally
independent. At this point, resampling the data would more or less just
follow even distribution with some linear trend during all the year thus
it makes no sense to pay special attention to them. Should this change
in the future and new assumptions could be drawn, then similar prin-
ciples as used in the examples in this paper can be reused to build
dedicated simulator for these datasets.

5. Conclusions

Restrictions concerning aviation safety data and their availability
lead to the search for solutions, which are capable to overcome them.
There are cases in which almost all safety data are accessible and just
few data points need to be acquired via data resampling; in other cases
there are very little or no safety data available and so they need to be
simulated using expert assumptions only. The former can help to verify
new methodologies or advanced modelling as they are likely to achieve
comparable results with real data; the latter makes it possible to learn
how to build or to trial the same methodologies or advanced models as
in the former case. Both cases are usable for modern research and de-
velopment activities in the domain of aviation safety but due to their
general nature, they can find application in other transportation do-
mains or high-risk industries. Because the data to be simulated or re-
sampled in aviation are related to socio-technical system, expert as-
sumptions are often of critical importance and are to be considered
adequately.

This paper drew basic principles and solutions to the above-men-
tioned problems. Using basic mathematical functions, expert assump-
tions were transformed into sets of equations. Were real data were
accessible, the equations considered them. Typical problem with such
data in aviation is that it is available only annually as total figures
whilst month or day distribution is desired. Introduced sets of equations
were used for data resampling whilst annual total figures were obeyed.
Where no data are available, the solution is based on pseudorandom
number generation, such as modern computational software can gen-
erate. Mathematical functions then complement the pseudorandom
number so that it produces conceivable outcome in accordance with
expert assumptions.

It is clear that the synthetic data used to fill the gaps of existing
limitations will never contain anything outside of what is inserted in the
very equations behind the simulation. Even though they are based on
expert assumptions and account for randomness, it is not possible to
include all the variables, which affect the values of measured aviation
safety data. The less real data and expert assumptions there are, the
more inaccurate the resampled or simulated data and vice versa. It is
important to note that because the aviation is a socio-technical system,
it is unlikely that the system is deterministic. Therefore, there is no
ultimate set of assumptions and equations, which describe the system
completely and so real data should always be preferred. On the other
hand, some of these limitations may be reduced by further research,
applying methods from different studies dealing with data scarcity,
such as Bayesian approach or Monte Carlo simulation, to refine and
perfect the mathematical functions used to generate synthetic data in
specific applications.

Despite the limitations, the synthesised data make it possible to
implement, verify and validate advanced methodologies or analytical
tools, which are highly dependent on data sample size. There are con-
straints stemming from the confidential nature of aviation safety data
but because no aviation stakeholder is willing to share them ex-
tensively, under the risk of their misuse and with no assurance what
will the benefits be, it seems unlikely that this will improve soon. On
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the other hand, a chance exists to improve the situation with new
technologies and inventions. At this stage, these can be pre-set up and
checked using simulated data and then, if proven, used to demonstrate
their capabilities to aviation stakeholders, including regulatory bodies.
This may eventually resolve the general unwillingness to share and
work with safety data jointly and to establish the full picture of aviation
safety. As soon as some technology is proven at least on partially real
data, it may eventually convince aviation stakeholders to trial it.
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